核磁共振波譜法(Nuclear Magnetic Resonance,簡寫為NMR)與紫外吸收光譜、紅外吸收光譜、質譜被人們稱為“四譜”,是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,亦可進行定量分析。
一、原理
二、分類
NMR波譜按照測定對象分類可分為:1H-NMR譜(測定對象為氫原子核)、13C-NMR譜及氟譜、磷譜、氮譜等。有機化合物、高分子材料都主要由碳氫組成,所以在材料結構與性能研究中,以1H譜和13C譜應用最為廣泛。
三、用途
除了運用在醫學成像檢查方面,在分析化學和有機分子的結構研究及材料表征中運用最多。
1、有機化合物結構鑒定
一般根據化學位移鑒定基團;由耦合分裂峰數、偶合常數確定基團聯結關系;根據各H峰積分面積定出各基團質子比。核磁共振譜可用于化學動力學方面的研究,如分子內旋轉,化學交換等,因為它們都影響核外化學環境的狀況,從而譜圖上都應有所反映。
2、高分子材料的NMR成像技術
核磁共振成像技術已成功地用來探測材料內部的缺陷或損傷,研究擠塑或發泡材料,粘合劑作用,孔狀材料中孔徑分布等?梢员挥脕砀倪M加工條件,提高制品的質量。
3、多組分材料分析
材料的組分比較多時,每種組分的 NMR 參數獨立存在,研究聚合物之間的相容性,兩個聚合物之間的相同性良好時,共混物的馳豫時間應為相同的,但相容性比較差時,則不同,利用固體 NMR 技術測定聚合物共混物的馳豫時間,判定其相容性,了解材料的結構穩定性及性能優異性。
此外,在研究聚合物還用于研究聚合反應機理、高聚物序列結構、未知高分子的定性鑒別、機械及物理性能分析等等。
四、樣品制備
1、樣品量
不同場強需要的樣品量不同,如300兆核磁、分子量是幾百的樣品,測氫譜大約需要2mg以上的樣品,測碳譜大約需要10mg以上。600兆核磁測氫譜大約需要幾百微克。
2、氘代試劑的選擇
因為測試時溶劑中的氫也會出峰,溶劑的量遠遠大于樣品的量,溶劑峰會掩蓋樣品峰,所以用氘取代溶劑中的氫,氘的共振峰頻率和氫差別很大,氫譜中不會出現氘的峰,減少了溶劑的干擾。在譜圖中出現的溶劑峰是氘的取代不完全的殘留氫的峰。另外,在測試時需要用氘峰進行鎖場。
3、是否必須加TMS
五、圖譜分析
一般先確定孤立甲基及類型,以孤立甲基峰面積的積分高度,計算出氫分布;其次是解析低場共振吸收峰(如醛基氫、羰基氫等),因這些氫易辨認,根據化學位移,確定歸屬;最后解析譜圖上的高級偶合部分,根據偶合常數、峰分裂情況及峰型推測取代位置、結構異構、立體異構等二級結構信息。
2、解析核磁共振碳譜
一般先查看全去偶碳譜上譜線數與分子式中所含碳數是否相同?數目相同說明每個碳的化學環境都不同,分子無對稱性;數目不相同(少)說明有碳的化學環境相同,分子有對稱性;然后由偏共振譜,確定與碳偶合的氫數;最后由各碳的化學位移,確定碳的歸屬。
3、結合應用碳譜和氫譜
C譜和H譜可互相補充。H譜不能測定不含氫的官能團,如羰基和氰基等;對于含碳較多的有機物,如甾體化合物,常因烷氫的化學環境相似,而無法區別,這是氫譜的弱點;而碳譜彌補了氫譜的不足,它能給出各種含碳官能團的信息,幾乎可分辨每一個碳核,能給出豐富的碳骨架信息。但是普通碳譜的峰高常不與碳數成正比是其缺點,而氫譜峰面積的積分高度與氫數成正比,因此二者可互為補充。
4、如何計算偶合常數?
在網上有這樣一個求助帖:請教偶合常數的計算, 比如 :—OCH2CH3 這兩個碳上的氫之間的化學位移差值一般超過2了,400M核磁,那再乘以400的話,偶合常數豈不是快一千了?
首先我們得搞明白偶合常數的定義:自旋偶合會產生共振峰的分裂后,兩裂分峰之間的距離(以Hz為單位)稱為偶合常數。不是兩組氫之間化學位移的差值,而是一組峰中相鄰兩個峰之間的化學位移的差值!
可以從偶合常數看出基團間的關系,鄰位偶合常數較大,遠程偶合常數較小。還可以利用Kapulus公式計算鄰位氫的二面角。對于有雙鍵的化合物,順式的氫之間偶合常數為6~10Hz,反式的氫之間偶合常數為12~16Hz。
六、常見問題
1、元素周期表中所有元素都可以測出核磁共振譜嗎?
不是。首先,被測的原子核的自旋量子數要不為零;其次,自旋量子數最好為1/2(自旋量子數大于1的原子核有電四極矩,峰很復雜);第三,被測的元素(或其同位素)的自然豐度比較高(自然豐度低,靈敏度太低,測不出信號)。
2、怎么在H譜中更好的顯示活潑氫?
與O、S、N相連的氫是活潑氫,想要看到活潑氫一定選擇氘代氯仿或DMSO做溶劑。在DMSO中活潑氫的出峰位置要比CDCl3中偏低場些。活潑氫由于受氫鍵、濃度、溫度等因素的影響,化學位移值會在一定范圍內變化,有時分子內的氫鍵的作用會使峰型變得尖銳。
3、怎么做重水交換?
為了確定活潑氫,要做重水交換。方法是:測完樣品的氫譜后,向樣品管中滴幾滴重水(不宜加入過多,一般1-2滴即可),振搖一下,再測氫譜,譜中的活潑氫就消失了。醛氫和酰胺類的氨基氫交換得很慢,需要長時間放置再測譜或者用電吹風加熱一下,放置一會再進行檢測。此時會發現譜圖中水峰信號增強,在CDCl3中此時的HDO峰會在4.8ppm的位置。此外,甲醇和三氟醋酸都有重水交換作用,看不到活潑氫的峰。
4、解析合成化合物的譜、植物中提取化合物的譜和未知化合物的譜,思路有什么不同?
合成化合物的結果是已知的,只要用譜和結構對照就可以知道化合物和預定的結構是否一致。對于植物中提取化合物的譜,首先應看是哪一類化合物,然后用已知的文獻數據對照,看是否為已知物,如果文獻中沒有這個數據則繼續測DEPT譜和二維譜,推出結構。對于一個全未知的化合物,除測核磁共振外,還要結合質譜、紅外、紫外和元素分析,一步步推測結構。
最后附上常見雜質核磁化學位移表: